Human Genetics & Medical Biochemistry



The objectives are to: (i) teach elements of genetics and medical biochemistry in the context of human perspectives that are of interest and fascination to students (ii) simplify comprehension of complex concepts in human disorders through interactive subject areas in biochemistry, immunology and genetics (iii) establish awareness of how new and fast moving developments in related areas of genomics, bioinformatics, human genome project, human gene mapping and human gene therapy will enhance our understanding of the molecular basis of disorders in humans.


The module begins with an overview of the basis of heredity: the cell cycle, mitosis, meiosis, gametogenesis and fertilization in human development, including the phenomenon of imprinting. The human chromosome structure is discussed in relation to sex-linked genes, sex determination, variations, aberrations, mutations, linkage and crossing over. The human genome is then dealt at molecular level with emphasis on the evolution of the concept of the gene and its genetic definition.

A historical visit of Garrod's concept is followed by broad classification of inherited diseases including a detailed review of incidence across all areas of metabolism, nomenclature and most commonly inherited diseases.

Each of the following topics will deal with inherited disease, in the remit of incidence, biochemical pathways and where applicable the abnormal gene(s) affected, clinical consequences, diagnosis and treatment. Galactosaemia and lactose metabolism; cystic fibrosis; purines and pyrimidines synthesis in gout and Lesh-Nychan syndrome; hereditary xanthinuria with relevant emphasis in prenatal diagnosis and ex vivo gene therapy; defects in lipid structures/synthesis in hypercholesterolemia; Tay Sachs and Gaucher diseases and related lysosomal disorders; diabetes; genetics and biochemistry of ethanol metabolism; molecular basis of prion infection; clinical aspects of nitric oxide.

There will be coverage of molecular diagnosis, genetic screening and counseling, prenatal diagnosis and potential gene therapy of human diseases, with particular reference to cystic fibrosis.

The immunogenetics section will introduce the structure and diversity of antibody production via somatic mutations, HLA and tissue grafts and blood groups.

The human perspectives of defects in molecular signaling will be exemplified in the case of the G-protein switch and receptor coupled signal transduction. Examples will include colour blindness (spectral sensitivity variations), combined precautious puberty, pseudohypothyroidism, oncognes, and nephritic diabetes insipidus.

The final part of the module will discuss broader issues in DNA fingerprinting (paternity test, forensic application and sex identification of unborn), the future of human gene therapy approaches, the merits of human genome programme and ethics pertaining to human genetics and society.