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ABSTRACT 

 

The histidine phosphatase superfamily is a large functionally diverse group of homologous proteins that during 

reactions become phosphorylated at a conserved catalytic core centred on a histidine. Although a diverse list of 

activities have already been discovered, the superfamily certainly houses uncharacterised novel functions. Many 

superfamily sequences cannot be annotated reliably with any known functions as they have little similarity to 

identified members and superfamilies present significant, unresolved challenges to automated genome annotation 

methods. Clustering experiments had previously revealed well defined groups that likely share the same function, 

for which no functional data are available. This study aimed to identify novel functions for members of the HP 

superfamily, focussing on large groups of hypothetical proteins. In this study structure function relationship 

knowledge was combined with a variety of bioinformatics methods, including genomic context, homology 

modelling and small molecule docking, to uncover novel functional annotations. 

 

INTRODUCTION 

 

The Histidine Phosphatase Superfamily Background 

 

The histidine phosphatase (HP) superfamily is a large functionally diverse group of proteins, whose range of 

activities include contributing to metabolic pathways, both anabolic and catabolic, signalling and regulation. 

During reactions they become phosphorylated at a conserved catalytic core centred on a histidine (Rigden, 2008). 

The earliest discovered and most intensively studied member of the family, cofactor-dependent phosphoglycerate 

mutase (dPGM), is anomalous in catalysing a mutase reaction, as the rest of the family is composed of 

phosphatase activities. This history has caused problems of mis- and over-annotation by automated annotation 

tools as well as human interpretation of sequence relationships being biased to mutase rather than phosphatase 

activity (Rigden, 2008). 

 

The superfamily is split into two branches with a distant evolutionary relationship that share limited sequence 

similarity. A RHG motif, in which the histidine is phosphorylated during catalysis, is shared near the beginning of 

the sequence (Bazan et al., 1989). The functions of the larger branch 1 with more bacterial sequences are much 

more diverse than that of the smaller branch 2, with more eukaryotic proteins containing mainly acid 



phosphatases (APs) and phytases. Branch 1 family members are found in the cytoplasm and nucleus, while branch 

2 proteins appear to be secreted or remain in the endoplasmic reticulum, at the cell surface, periplasm or cell wall 

(Rigden, 2008).  

 

The specificities of the enzymes deviate greatly from the small substrate of dPGM, phosphoglycerate (Mr = 187) 

to the substrate of SixA, the histidine-containing phosphotransfer (Hpt) domain of ArcB (Mr = 9050) (Rigden, 

2008).  

 

 

 

SixA (Figure 1) has a near minimal core α/β domain (Hamada et al., 2005). Functions differentiate between 

lineages as the substrate binding site is defined by different insertions into the fold. The largest HP structure is 

almost three times bigger than the smallest due to significant N- and C-terminal extensions and the fact that the 

insertions can be as long as the core domain. The SixA structure can be hypothesised as resembling the ancestor 

of present members of the HP superfamily, with evolution adding insertions producing formations containing 

suitable cavities for binding smaller substrates. Rigden (2008) suggests that twice independently early on in 

evolutionary history the decoration of the basic fold occurred, due to the lack of structural or sequence similarity 

between insertions in the two branches and both branches being widely represented in eukaryotes and bacteria. 

 

In the superfamily catalytic activity centres on phosphorylation and dephosphorylation of a histidine residue that 

follows the first β-strand (β1) of the fold (His8 in E. coli SixA). In the regions after strands β1, β2 and β4 the 

Figure 1: Cross-eyed stereo cartoon of Escherichia coli SixA (PDB code 1UJC). Structure is shown as a 

cartoon coloured rainbow except for grey showing the conserved RHG domain. Image generated using the 

PyMOL Molecular Graphics System, Version 1.3 Schrödinger, LLC. 

 



other residues contributing to the conserved catalytic core can be found. Proton donors are found following β1, β3 

or β4. The catalytic cycle mechanism is shown in Figure 2.  

 

 

 

 

 

 

Varying between lineages, additional “phosphate pocket” interactions are added that are contributed by residues 

lying in the β1–β2 loop. The residues that form the “phosphate pocket” hydrogen bond the phosphate group 

aiding the inline transfer of the phospho group from substrate to the enzyme (Wang et al., 2006). These include a 

pair of arginine residues (positions 7 and 55 in SixA) and another histidine, His108, which in known active 

members of the superfamily are completely conserved. Other residues are also highly conserved, between 

otherwise very diverse sequences, including Gly9 (SixA numbering) which forms part of the characteristic RHG 

motif and a L[S/T]XXG motif in the region between β1 and β2 (Rigden, 2008).  

 

Scattered throughout the superfamily sequences, clustered in the loops following β1, β3 and β4, are varying 

specificity determining residues that bind the rest of the substrate. San Luis et al. (2013) identified an additional 

residue (Arg383) within the Sts (suppressor of T-cell signalling) phosphatases that is critical for catalytic activity 

and essential for Sts-1 to function as a negative regulator of T-cell receptor (TCR) signalling pathways. They 

found Sts-1 Arg383 is conserved in all Sts homologues and branch 2 APs however is lacking in the majority of 

proteins in branch 1, suggesting that despite the same catalytic core present in the two branches, there may be 

significant differences between the catalytic apparatus between the two branches (San Luis et al., 2013). 

Figure 2: Histidine phosphatase superfamily catalytic mechanism. Showing the four invariant residues of 

the catalytic core as numbered in SixA of E. coli. During the course of the reaction His8 is phosphorylated.  

The “phosphate pocket” is formed from the other three residues that electrostatically interact with the phospho 

group before, during and after its transfer. PP represents additional residues (neutral or positive), which vary 

to a surprising extent, that may hydrogen bond to the phospho group contributing to the “phosphate pocket”. 

PD shows the proton donor (an aspartate or glutamate) whose position varies in different families. From 

Rigden (2008). 



While the majority of the superfamily are phosphatases carrying out the mechanism in Figure 2, there are also the 

anomalous mutases: dPGMs and BPGMs. These catalyse three reactions, a phosphatase reaction follows the 

method in Figure 2, as well as a synthase and mutase reaction. The mutases can be distinguished from the 

phosphatases by their capacity to preserve intermediates bound while allowing their reorientation with the active 

site (Rigden, 2008).  

 

Mutations or deficiencies in many human members of the HP superfamily lead to diseases, therefore there are 

important medical and clinical applications altering the activity of the enzymes (Hadjigeorgiou et al., 1999; 

Lemarchandel et al., 1992). HP superfamily members are found in various parasites and their inhibition is also of 

therapeutic interest (Slavin et al., 2002; Shakarian et al., 2003). Novel antibiotic production efforts may be aided 

by a better understanding of the roles of HPs involved in the synthesis of different classes of antibiotics (Huang et 

al., 2005; Palanichelvam et al., 2000). There are also current and potential future applications of several 

phosphatases in agriculture, with the addition of phytase to animal feed already in use (Kim et al., 2006). 

 

Although the HP superfamily possesses a diverse list of activities, it certainly houses novel functions yet to be 

discovered. Many superfamily sequences cannot be annotated reliably with any known functions as they have 

little similarity to identified members. Well defined groups have been shown by clustering experiments (Rigden, 

unpublished) that probably share the same function, for which no functional data are available. With structure 

function relationship knowledge bioinformatics tools could be used to predict their functions (Rigden, 2008). 

 

Computational Methods for Predicting Function 

 

There has been a continuation in the exponential rate of growth of protein sequences in databases with the arrival 

of third generation sequencing technology, enhancing the sequence diversity of superfamilies such as the HPs 

(Mello et al., 2010). It would be a costly and time consuming task to experimentally determine the functions of all 

these proteins (Radivojac et al., 2013; Lee et al., 2007). Bioinformatics methods provide a helpful stopgap and 

direct laboratory experiments in annotating protein sequences with functions, from broad functional categories to 

specific catalytic activities (Mello & Rigden, 2012).  

 

Protein function can be described at three different levels (Loewenstein et al., 2009), making it difficult to predict 

(Radivojac et al., 2013). Activity at the molecular level, such as catalysis, is described by molecular function, 

which is commonly predicted through identifying homologues or orthologues. Biological process considers 

broader functions, such as particular metabolic pathways, that are carried out by assemblies of molecular 

functions. Indirect functional associations and direct physical protein-protein interactions found in biological 



processes can be identified by genomic inference methods. The compartment of a cell in which a protein performs 

its function is described by the cellular component, which can be predicted by methods that predict post 

translational modifications, membrane association, residue composition or signal sequence (Lee et al., 2007). 

Predicting protein function is also complicated as functions are context dependent and proteins are often 

promiscuous and multifunctional (Radivojac et al., 2013). 

 

Inheritance through homology, the knowledge that proteins with similar sequences often have similar functions, is 

the most common approach to computational protein function prediction, although many of the mis- and over-

annotations in databases are the result of inheritance through homology being used liberally (Lee et al., 2007). If 

they have descended from a common ancestral sequence protein sequences are considered homologous (Fitch, 

1970). They are likely to perform a similar function at the molecular level as they have a similar three-

dimensional (3D) structure (Teichmann, 2002).  

 

A traditional approach for computational functional inference is searching databases of proteins with algorithms 

such as BLAST (Basic Local Alignment Search Tool) (Altschul et al., 1990; Altschul et al., 1997), detecting 

homologues whose functions have been determined experimentally (Gabaldón & Huynen, 2004; Radivojac et al., 

2013). By 2004 homology search sensitivity had more than doubled due to PSI-BLAST and other profile based 

methods (Gabaldón & Huynen, 2004). Another iterative search tool that uses Hidden Markov Models is 

Jackhmmer which is more sensitive and selective than PSI-BLAST (Li et al., 2012). In this project sequence 

based methods like these were useful for identifying new clusters but were not suitable for assigning functions as 

the aim was to identify novel functions. In this respect genomic context and modelled structures were used. 

 

Evidence of Function from Genomic Context 

 

Except for parasitic or symbiotic cases, being encoded in the same genome is required for proteins to interact. 

Regardless of their sequence similarity genes that are part of the same biological process have a tendency to occur 

in each other’s genomic context. Analysing sequences in their genomic context allows the identification of 

interacting proteins as well as the biological process in which they play a role, and thus provides information 

about their functional context (Gabaldón & Huynen, 2004).  

 

The most direct form of genomic context are gene fusion events. Functionally this fusion may result in an 

enhancement of an interaction between their activities biochemically (Gabaldón & Huynen, 2004). Marcotte et al. 

(1999a) and Enright et al. (1999) showed that many gene fusions involved genes known to functionally interact 



(Enright et al., 1999; Marcotte et al., 1999a). Gene fusion allows expanding the functional association of larger 

groups of interconnected genes. 

 

Genomes are rapidly shuffled and rearranged over the course of evolution, although in prokaryotes some gene 

clusters are conserved (Gabaldón & Huynen, 2004). These genes tend to be part of the same operon (Moreno-

Hagelsieb et al., 2001) and encode proteins that functionally interact (Dandekar et al., 1998; Overbeek et al., 

1998). Gene neighbourhood methods use this organisation and extend to eukaryotes in which co-regulated 

interacting genes are occasionally found to cluster in the genome (Blumenthal, 1998; Teichmann & Babu, 2002). 

In 2003 Lee and Sonnhammer made the observation that genes involved in the same biochemical pathway tend to 

be clustered together in a variety of eukaryotic genomes (Lee & Sonnhammer, 2003). 

 

Functional predictions can also be made when two genes are encoded in a large number of genomes, yet both are 

lacking from other genomes, using co-occurrence techniques, as studies have shown proteins that are distributed 

across species in a similar manor have a high propensity to interact functionally (Pellegrini et al., 1999). Another 

powerful sign of functional associations between proteins is conservation of co-expression, a proxy for co-

regulation (Marcotte et al., 1999b), therefore functional interactions can also be predicted from genome wide 

microarray expression data (Gabaldón & Huynen, 2004). 

 

Sequences can be visualized in their genomic context using the Search Tool for the Retrieval of Interacting 

Genes/Proteins (STRING) web server (Szklarczyk et al., 2011). STRING provides a critical assessment and 

integration of protein-protein interactions on a global scale including functional (indirect) and physical (direct) 

associations (Szklarczyk et al., 2015). STRING reports predicted functional partners for query proteins with a 

confidence score (Szklarczyk et al., 2011), based on interactions combined from several sources including de 

novo predicted interactions from algorithms using co-expression as well as genomic information, pathway 

connections imported from manually curated databases, experimental evidence derived from primary databases 

and automated text-mining of publications (Szklarczyk et al., 2015). STRING not only reports the level of 

genomic association between genes and therefore the intensity of the functional association between their 

products, but also additional information about the genes in their genomic context such as the gene order (Snel et 

al., 2000). 

 

It is common for genomic context to provide clues of reaction type, but when used alone it is often not sufficient 

to specify the identity of the substrates. For this task homology modelling and subsequent In silico ligand docking 

are used (Gerlt et al., 2012). 

 



Structure Based Functional Inference 

 

As homologous proteins evolve their structure is frequently more conserved than their sequence (Chothia & Lesk, 

1986). When sequences diverge beyond a degree of similarity that can be detected reliably using sequence 

comparison methods, structural information can be used to reveal proteins with similar function (Lee et al., 2007; 

Loewenstein et al., 2009). 

 

Proteins that display structural similarity along their entire length of amino acid sequence are likely to have 

similar or the same function (Lee et al., 2007). It is paramount to take into account the number of residues in the 

alignment and the quality of the superposition when evaluating the significance of the similarity between two 

proteins (Lee et al., 2007). Transferring function from one protein to another should be undertaken cautiously as 

two proteins may have a similar fold but different functions (Loewenstein et al., 2009). 

 

In highly variable superfamilies that have significant structural divergence, such as the HP’s, new functions can 

evolve through insertion of secondary structure components as mentioned above (Reeves et al., 2006). They 

frequently accumulate producing a bigger structural motif or feature on the surface modifying the active site 

geometry or encouraging novel protein-protein interactions (Lee et al., 2007). 

 

Using structure to predict function often uses global structure comparison, comparing the query protein structure 

to structure database domains (Loewenstein et al., 2009). Global structure comparison methods do not 

differentiate overall fold conservation and functionally relevant regions of the protein (Loewenstein et al., 2009) 

as small changes in an active or binding site can cause a divergence of function (Lee et al., 2007), and so were not 

relevant to this particular project. In this study it was more appropriate to analyse localised structural regions such 

as pockets and active site clefts to produce details on potential small molecule binding to suggest functions (Lee 

et al., 2007; Loewenstein et al., 2009). 

 

To conserve a certain function through evolution the functional sites local environment must be conserved, even if 

other areas of the fold are modified. Enzymes create a specific chemical environment by isolating substrates in 

binding pockets or active site clefts, where catalysis is performed by a limited number of residues (Lee et al., 

2007). It is the identity and special arrangement of these active site residues that determine substrate specificity 

(Gerlt et al., 2012). Some pocket centred approaches detect the preservation of physico-chemical properties, such 

as hydrophobicity and charge, of the binding sites amino acids in similar 3D conformations to describe protein 

ligand interactions allowing the identification of authentic functional homologues (Lee et al., 2007; Loewenstein 

et al., 2009).  



In silico ligand docking methods capture information about differences in substrate specificity from the structures 

of the binding sites and residue substitutions within them (Gerlt et al., 2012). Interaction prediction through 

docking procedures predict where and how proteins interact rather than which proteins interact (Gabaldón & 

Huynen, 2004). 

 

Previous Studies 

 

The computational strategies proposed for assigning novel functions to members of the HP superfamily, such as 

genomic context, homology modelling and metabolite docking, have been previously successfully reported in the 

study of the enolase superfamily by Babbitt and colleagues (Gerlt et al., 2012; Lukk et al., 2012; Zhao et al., 

2013). The enolase superfamily is also functionally diverse containing more than 8000 members (Gerlt et al., 

2012) and more than 20 distinct substrates have been identified (Lukk et al., 2012). The active sites could be 

considered analogous to the phosphatase of the HP superfamily. 

 

As the majority of the enolase superfamily are found in microbes (Neidhart et al., 1990) information provided by 

operon context was used for annotating some members with previously unknown functions (Gerlt et al., 2012). 

Homology modelling was used to obtain “dockable” structures using the template of an experimentally 

determined ligand structure. In silico ligand docking methods were then used to infer substrate specificity from 

the binding site structure. Libraries of potential and known metabolites were docked to predict which substrates 

are likely to bind along with their “poses” in the binding site. A rich diversity of substrate specificity for several 

uncharacterised groups was predicted and used to direct experimental testing of substrates. The biochemical 

studies subsequently confirmed that most of the key interactions between the active site and substrate were 

correctly predicted, resulting in the assignment of novel functions to members of the enolase superfamily (Gerlt et 

al., 2012; Lukk et al., 2012; Zhao et al., 2013). 

 

Aims of the Current Project 

 

The aim of the present study was to identify novel functions for members of the HP superfamily, focussing on 

large groups of hypothetical proteins. To achieve this, the first phase of the investigation was the collection of a 

complete set of HP sequences using the iterative search program Jackhmmer (Eddy, 1998; Finn et al., 2011). The 

second phase was to partition the collected sequences, using sequence similarity, into “clusters” that likely share 

the same function by utilising CLANS (Frickey & Lupas, 2004; Frickey & Weiller, 2007). As the emphasis was 

the prediction of novel functions, the next stage was to eliminate clusters of HPs with known functions by 

performing database searches. The final phase was to predict the functions of the remaining large clusters of HPs, 



using a variety of bioinformatics methods including genomic context, homology modelling and metabolite 

docking. STRING (Szklarczyk et al., 2015) was proposed for visualising genomic context, identifying predicted 

functional partners and determining potential ligands for subsequent docking, using the RosettaLigand (Combs et 

al., 2013), into homology modelling created with RosettaCM (Combs et al., 2013). 

 

METHODS 

 

Collecting a Complete Set of Histidine Phosphatase Sequences 

 

The Jackhmmer program, from the Hmmer v3.1b1 package (Eddy, 1998; Finn et al., 2011), was used to 

iteratively search query protein sequences against the UniRef90 protein sequence database downloaded from 

http://www.uniprot.org/uniref/ on 12/02/15 (Bateman et al., 2015; Suzek et al., 2011). UniRef90 was chosen to 

remove redundancy, as it is built from clustering UniRef100 sequences at a 90% sequence identity level. 

 

Jackhmmer’s default of 5 iterations was increased to a maximum number of 20 iterations, to search UniRef90 

with 8 query sequences from branch 1 representatives (Appendix 1). For each query searched, the number of 

sequences collected was plotted against the number of iterations. The files containing the collected sequences 

were compared, to assess if the sequences were the same in each collection, and manually searched for the 

presence of branch 2 proteins.  

 

Clustering Sequences 

 

CLANS software (Frickey & Lupas, 2004; Frickey & Weiller, 2007) was used to divide the collected sequences 

into clusters that likely share the same function. As the FASTA file generated by Jackhmmer contained a 

relatively large number (29,295) of sequences and was too big for CLANS to process, CD-HIT v4.6.1 (Fu et al., 

2012; Li & Godzik, 2006) was first used (word size of 4) to generate a file with a 65% sequence identity cut-off, 

again removing redundancy, resulting in a FASTA file containing 10,548 sequences. For full functionality of 

CLANS, NCBI’s BLAST 2.2.18 (Altschul et al., 1990; Altschul et al., 1997) complete with blastall and formatdb 

executables was installed. The FASTA file containing sequences generated by CD-HIT was used as an input for 

CLANS using an E-value of 1 and P-value of 0.1. In CLANS a cut-off value of 1e-40 was selected (specifying up 

to what E-value to take BLAST-hits into account for clustering) and clustering was run for 32739 rounds. CLANS 

was used to automatically detect clusters using an iterative “neural network based” approach (minimum sequences 

per cluster 2, maximum rounds 100).  

 

http://www.uniprot.org/uniref/


Eliminating Clusters of Proteins with Known Functions 

 

For the largest automatically detected clusters, database searches were performed to eliminate those with known 

functions. The HHpred server (Biegert et al., 2006; Söding et al., 2005) was used to search a representative query 

sequence from each cluster against the PDB (Berman et al., 2000; Bourne et al., 2004) and CD (Marchler-Bauer 

et al., 2015) databases, detecting clusters of sequences that have close similarities to protein structures where the 

function is better known. Clusters with relatively high sequence identity (>30%) to a reliable family or structure 

of known function, were not of interest in this project and so were discarded, as the same or similar function was 

assumed. The clusters of interest to this study had relatively low sequences identities (≤30%) to any family or 

structure of known function. As they were not clearly identifiable as anything in particular, no conclusion could 

be made about their functions. These clusters were retained for further investigation to determine novel functions 

by genomic context, homology modelling and small molecule docking. Other clusters were dismissed as they 

contained multiple large insertions in the sequence compared to the structure matches, therefore subsequent 

structure modelling in these sequence gap regions would be not much more than guess work 

To detect activities not represented by structures or domain entries the blastp executable from BLAST-2.2.30+ 

(Camacho et al., 2009) with an E-value threshold of 0.01 was used to search the query sequences from each 

cluster against the reviewed Swiss-Prot database downloaded from http://www.uniprot.org/downloads on 

17/06/15 (Bairoch & Apweiler, 2000; Bairoch et al., 2004; Bateman et al., 2015). Again clusters whose sequences 

had relatively high sequence identity (>30%), were dismissed as they were assumed to have the same or similar 

function and assigned the Swiss-Prot activity. 

 

For the remaining clusters of interest, were no conclusion could be made about function, each sequence identifier 

was entered at http://www.uniprot.org/uploadlists/ (Bateman et al., 2015).The corresponding UniProt records 

were retrieve and examined to determine if they were reviewed (high quality manually annotated proteins, with 

information extracted from the literature, experimental results and curator-evaluated computational analysis) or 

unreviewed (automatically computationally annotated proteins awaiting full manual annotation) and find out what 

species each clusters sequences are from. 

 

Detecting Domain Fusions 

 

To detect any other domains fused to the HPs the RPS BLAST (Reversed Position Specific BLAST) executable 

from BLAST-2.2.30+ (Camacho et al., 2009) with an E-value threshold of 0.01 was used to search the query 

http://www.uniprot.org/downloads
http://www.uniprot.org/uploadlists/


sequences from each cluster against the CD database of domains (Cdd_LE.tar.gz downloaded from 

ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/little_endian/ last modified 18/05/15; Marchler-Bauer et al., 2015). 

 

STRING for Genomic Context 

 

STRING v10 (Szklarczyk et al., 2015) was used to identify predicted functional partners and visualise genomic 

contexts. Protein sequences from each cluster were used to search the STRING database, restricting the organism 

to search for each cluster to the general groups identified from UniProt records described above (cluster 6564, 

insects; clusters 6563 and 6552 fungi; clusters 6560, 6545 and 6544 bacteria; cluster 6541, yeast). “Interactors 

wanted” was set to “COGs”. Prediction methods selected for use were neighbourhood, gene fusion, co-

occurrence, co-expression, experiments, databases and textmining. The confidence score was set to medium 

(0.400).  

 

A bi-directional / reciprocal genome BLAST (Altschul et al., 1990; Altschul et al., 1997) was used to confirm the 

orthology of each clusters sequences (implying likely same function) to the most similar protein identified in the 

STRING database. 

 

Detecting Signal Peptides and Predicting Localisation 

 

Signal peptides were sought in three representative sequences for cluster 6564 (Accession numbers A0A026VZI3, 

L7M867 and W8BG64) using the SignalP 4.1 (Emanuelsson et al., 2007; Petersen et al., 2011) and Phobius (Käll 

et al., 2004; Käll et al., 2007) servers. The predicted subcellular localisation of the proteins was determined using 

the TargetP 1.1 (Emanuelsson et al., 2000; Emanuelsson et al., 2007) and PSORTII (Nakai & Horton, 1999) 

servers.  

 

For cluster 6560 signal peptides were sought for a representative sequence (Accession number E5CGZ1) using 

the SignalP 4.1, Phobius, PrediSi - PREDIction of SIgnal peptides (Hiller et al., 2004) and Signal-3L (Shen & 

Chou, 2007) servers. To predicted the subcellular localisation of the proteins, and specifically distinguish bacterial 

secreted extracellular proteins from those localised and retained in periplasm, the following servers were used: 

PSORTb v3.0.2 (Yu et al., 2010), Gneg-mPLoc (Shen & Chou, 2010), SOSUIGramN (Imai et al., 2008), SLP- 

local (Matsuda et al., 2005), LocTree3 (Goldberg et al, 2014) and SRTpred (Garg & Raghava, 2008). 

 

 

 

ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/little_endian/


Homology Modelling with RosettaCM 

 

Homology models were created for a representative member of each cluster using RosettaCM (Combs et al., 

2013). To determine the optimum number of templates to use for modelling, preliminary homology models were 

created for a representative member of cluster 6541 (Accession Number G3AXW8) using 3, 5, 10, 15, 20, 30 and 

50 templates. For this the HHpred server (Biegert et al., 2006; Söding et al., 2005) was used to obtain alignments 

of sequences with homolog PDB templates for the comparative model building (HMM database: PDB, Maximum 

number of hits set to 3, 5, 10, 15, 20, 30 and 50). 

 

Rosetta’s REscore (Combs et al., 2013) as well as Qmean (Benkert et al., 2008; Benkert et al., 2009) were used to 

predict the best models. The number of templates used against Rosetta’s REscore (Appendix 2) and number of 

templates used against Qmean score (Appendix 3) were plotted, determining that the models produced from more 

templates are of lower quality. Based on these preliminary results from cluster 6541, models were only created 

using 3, 5 and 10 templates for the other clusters. 

 

RosettaCM was then used to produce homology models for a representative member of the other clusters of 

interest. The HHpred server was used to obtain alignments of sequences with homolog PDB templates for the 

comparative model building (HMM database: PDB, Maximum number of hits set to 3, 5 and 10). For all of the 

clusters, the 20 models produced using 3 templates, gave overall better Qmean and Rosetta REscore results than 

those models produced using 5 and 10 templates. To select the models to use for docking, from the 20 produced 

for each cluster using 3 templates, the Rosetta REscores were plotted against the Qmean Scores. The models used 

for docking for each cluster were those that had the lowest Rosetta REscore and highest Qmean score. PyMOL 

(The PyMOL Molecular Graphics System, Version 1.3 Schrödinger, LLC) was used to view and align the top 

scoring models from each cluster. For all clusters notable differences were observed between the top scoring 

models at the N-terminus. Cluster 6552 models also had notable differences at the C-terminal. 

 

It was decided to remodel the structures, using 3 templates (Table 1), after editing the sequences to remove the N-

terminal sequence before the start of the first domain of the HP (everything before the domain proceeding the 

RHG), which included the nudix domain in clusters 6544 and 6545. In the case of cluster 6552 the C-terminal 

region that exhibited significant differences was also removed for remodelling.  

 

 

 

 



Table 1: Sequences and templates used for final homology modelling. The representative sequence from each 

cluster, that was edited to remove the N-terminal region before the start of the first domain (and the C-terminal 

region that exhibited significant differences in cluster 6552), and the three homolog PDB templates identified by 

HHpred, used to produce the final 20 models for each cluster using RosettaCM.  

 

 

Cluster 

 

 

Representative Sequence (Accession Number) 

 

Templates (PDB IDs) 

 

6564 

 

Q9W438 

2GFI 

1QWO 

1QFX 

 

6563 

 

R8BHM4 

1H2E 

4IJ5 

4PZA 

 

6560 

 

E5CGZ1 

4FDT 

2GFI 

1QWO 

 

6552 

 

B2VS43 

1ND6 

3IT3 

4JOB 

 

6545 

 

K9ADW1 

4IJ5 

4PZA 

1H2E 

 

6544 

 

W5IGJ5 

4PZA 

4IJ5 

1H2E 

 

6541 

 

G3AXW8 

1H2E 

4IJ5 

4PZA 

 

 

Mapping Sequence Conservation To Models 

The CONSURF server (Ashkenazy et al., 2010; Celniker et al., 2013; Glaser et al., 2003; Landau et al., 2005) 

was used to map sequence conservation on to the top scoring model for each cluster. For this Multiple Sequence 

Alignment (MSA) files were prepared by aligning the sequences from each cluster using MUSCLE v3.8.31 

(Edgar, 2004) which were corrected to remove the N-terminal sequence before the start of the first domain of the 

HP (In the case of cluster 6552 the C-terminal region that exhibited significant differences was also removed) 

using Jalview 2.8.1 (Waterhouse et al., 2009). The CONSURF results were visualised in PyMOL (using Colour > 

Spectrum > B-factors) to displaying sequence conservation on top of the models as a spectrum of colours from 

blue, indicating conservation among relatives of this protein, to red indicating lack of conservation. 

 

 

 



Docking To Homology Models 

 

The RosettaLigand tool (Combs et al., 2013) at the ROSIE Server (Lyskov et al., 2013) was used to dock a library 

of conformers for each ligand (SDF file) into active sites of the best scoring protein models (PDB files) for each 

cluster. First the ligands to dock into each clusters top scoring model, identified by STRING above, were obtained 

from PDB entries in the RCSB PDB database (Berman et al., 2000). They were opened in PyMOL and the 3D 

coordinates for each ligand saved as .mol files. The Molecular formats converter 

(http://www.webqc.org/molecularformatsconverter.php) was then used to convert each .mol file to a .mol2 file, 

adding hydrogens. Frog2 (Miteva et al., 2010) at RPBS’s Mobyle (Alland et al., 2005; Néron et al., 2009) was 

used to generate the library of conformers for each ligand (output as an SDF file) using the mol2 files as input 

(All other settings Default). 

 

As RosettaLigand cannot perform binding site detection the approximate location of the binding site within 5 Å 

must be input to ROSIE. To do this the ligands were manually docked into the binding sites of the models using 

PyMOL to determine the x, y and z coordinates of the central atom. The PDB file containing the best scoring 

protein model without the ligand present, the SDF file containing the conformers of the ligand to be docked, and 

the X, Y, Z cartesian coordinates of where the ligand should be placed initially prior to docking were used as 

input for the RosettaLigand server. The number of structures to generate (number of docking predictions to 

create) was set to 1000 to produce high quality protein-ligand docking poses (All other settings Default). The 

generated structures were rank ordered according to interface_delta_X scores (the difference between the total 

Rosetta energy score with the ligand bound, and the ligand unbound). The ten lowest scoring poses were visually 

evaluated using PyMOL. 

 

RESULTS & DISCUSSION 

 

Collection of a Complete Set of Histidine Phosphatase Sequences 

 

Jackhmmer (Eddy, 1998; Finn et al., 2011) was used to collect the HP superfamily sequences, by iteratively 

searching eight branch 1 representative sequences (Appendix 1) against the UniRef90 (Bateman et al., 2015; 

Suzek et al., 2011) database. A preliminary test using Jackhmmer’s default of a maximum of 5 iterations revealed 

that not all the HP superfamily sequences were collected, so the maximum number of iterations was increased to 

20.  

 

http://www.webqc.org/molecularformatsconverter.php


The number of sequences collected from each of the eight queries tended to plateau at around 30,000 sequences 

(Appendix 4). After further iterations some of the collections became contaminated with unrelated proteins and 

proteins with glutamine rich regions, climbing to over 100,000 sequences. The sequences collected from two of 

the mutase queries (Accession numbers P00950 and P07738) and the E. coli SixA query (Accession number 

P76502) were not contaminated even at higher iterations, remaining stable at around 30,000 sequences. 

 

A comparison was made between the three collections that plateaued and remained stable at around 30,000 

sequences, revealing the sequences were largely the same in each collection. As the queries used to collect the 

sequences were all from the larger branch 1, the collections were also manually checked for the presence of 

branch 2 proteins. All three collections contained branch 2 APs and phytases. The fact that branch 2 proteins were 

present and the sequences were largely the same in each collection and instilled confidence that the entire HP 

superfamily had been collected. The collection containing 29,295 sequences generated from the E. coli SixA 

query was arbitrary chosen for subsequent sequence analysis and clustering. 

 

Sequence Analysis and Clustering 

 

Redundancy was removed from the collected sequences, using CD-HIT v4.6.1 (Fu et al., 2012; Li & Godzik, 

2006) to apply a 65% sequence identity cut-off, reducing the number of sequences from 29,295 to 10,548. Using 

CLANS software (Frickey & Lupas, 2004; Frickey & Weiller, 2007) the sequences were then partitioned using 

sequence similarity into “clusters” that likely share the same function.  

 

The sequence similarity network generated by CLANS shown in Figure 3 depicts the functional relationship 

among the sequences, where each node (dot) represents a protein sequence. Many of the nodes are connected with 

lines (edges) which represent the BLAST hits between the sequences. Dark lines symbolize highly significant 

BLAST hits (i.e. relatively low E-values) indicating close relationships between sequences, while lighter lines 

signify less significant BLAST hits (i.e. higher E-values). 

 



 

 

The relationships between the sequences were visualised at different levels of granularity, to observe how the 

various groups associate or dissociate, by using different E-value cut-offs to represent the network.  As the cut-off 

value specifies up to what E-value to take BLAST hits into account for the clustering, more stringent values 

displayed the network with more numerous smaller groups. The network shown in Figure 3 was generated from 

32739 rounds of clustering using an E-value cut-off value of ≤1e-40. Sequence similarity networks offer the 

advantages of being able to visualise relationships among huge numbers of sequences, such as the 10,548 

represented here, with moderate computational expense (Atkinson et al., 2009). 

 

Eliminating Clusters of Proteins with Known Functions 

 

Clusters were automatically detected in CLANS using an iterative “neural network based” approach. Database 

searches were then performed for the largest clusters, to eliminate those with known functions. First a 

representative sequence for each cluster was used as a query for a HHpred search (Biegert et al., 2006; Söding et 

al., 2005) against the PDB (Berman et al., 2000; Bourne et al., 2004) and CD (Marchler-Bauer et al., 2015) 

databases, to detect clusters containing sequences with close similarities to protein structures where the function is 

better known. The same or similar function was assumed for clusters with relatively high sequence identity 

(>30%) to a reliable family or structure of known function. An example was cluster 6572 that contained 216 

sequences. It had a top hit of 85% sequence identity to 6-phosphofructo-2-kinase/fructose-2-6-bisphosphatase 3 

 
 

 

Figure 3: Sequence similarity network for the HP superfamily members. A 3D graph layout partitioning 

10,548 HP superfamily sequences into “clusters”. The various sequences (nodes) are represented as dots. The 

lines (edges) connecting the nodes represent connections with BLAST E-values more stringent than the cut-off 

value ≤1e-40. Image generated using CLANS (Frickey & Lupas, 2004; Frickey & Weiller, 2007). 



(PDB ID 5AK0; Boyd et al., 2015). At levels of sequence identity greater than 30%, we could be confident our 

cluster had the corresponding activity, so the clusters were discarded. 

 

For the remaining clusters activities not represented by structures or domain entries were detected using each 

clusters sequences as a query for a BLAST search (Camacho et al., 2009) against the Swiss-Prot database 

(Bairoch & Apweiler, 2000; Bairoch et al., 2004; Bateman et al., 2015). Again clusters whose sequences had 

relatively high sequence identity (>30%), were unambiguously assigned the Swiss-Prot activity and dismissed. An 

example was cluster 6566 that contained 61 Sequences. All representatives had 3-phytase as the top hit with a 

maximum sequence identity of 49%. 

The clusters of interest to this study, that returned relatively low sequences identities (≤30%) from the HHpred 

and BLAST searches, are shown in Table 2. These clusters were retained for further investigation to determine 

novel functions by genomic context, homology modelling and small molecule docking. 

Table 2: Clusters of Interest. Clusters were no conclusion could be made about their function, as they returned 

relatively low sequences identities (≤30%) from database searches. The number of sequences found in each 

cluster is shown along with the accession number of the representative sequence used to query the PDB and CD 

databases using HHpred, the highest sequence identity detected by HHpred, the results from searching all the 

sequences in the cluster against Swiss-Prot using BLAST, the orthologous groups (COGs and NOGs) that the 

cluster corresponds to in the STRING database and the organisms the clusters sequences are found in. 

 

Cluster 

Number 

Number of 

Sequences in 

Cluster 

Accession 

Number of 

Query for 

HHpred Search 

HHpred Highest 

Sequence Identity  

BLAST against Swiss-

Prot Highest Sequence 

Identities   

Corresponding 

Orthologous Group in 

STRING 

Organism  

6564 59  D3TLX8 19%, phytase (PDB 
1QWO; Xiang et al., 

2004) 

Majority of representatives 
had multiple inositol 

polyphosphate phosphatase 
1 as the top hit with 

sequence identities 

generally ranging between 
23-30% 

 

Five representatives had 
Regulatory-Associated 

Protein of mTOR 

(RAPTOR) as the top hit 
with sequence identities 

ranging between 41-43% 

Majority of sequences 
correspond to NOG30599 

containing 452 proteins in 
184 species 

 

Five of the sequences 
correspond to NOG03700 

containing 327 proteins in 

214 species 

Insects 

6563 53 A0A074XP64 22%, glucosyl-3-

phosphoglycerate 
phosphatase (PDB 

4PZA; Zheng et al., 

2014)   

All representatives had 

phosphomutase-like 
protein 3 as the top hit with 

sequence identities 

generally ranging between 
30-35% 

NOG54269 containing  

272 proteins in 107 species  
 

Fungi 

6560 38 A0A096AB40 27%, putative multiple 

inositol polyphosphate 
HP (PDB 4FDT; Stentz 

et al., 2014) 

Majority of sequences 

yielded no hits 
 

11 had multiple inositol 

polyphosphate phosphatase 

NOG14402 containing 48 

proteins in 45 species 

Bacteria  



1 as the top hit, with 

sequence identities ranging 
between 19-24% 

6552 27 A0A010RPL5 24%, prostatic AP 

(PDB 1ND6; Ortlund et 

al., 2003) 

Majority of representatives 

had lysosomal, prostatic 

and testicular APs as their 
top hits, with sequence 

identities generally ranging 

between 22-24%.  
 

3 representatives had no 

hits found. 

NOG23976. Containing 62 

proteins in 52 species 

 

Fungi 

6545 17 E3GZT0 19%, Phosphatase 

(PDB 1H2E; Rigden et 

al., 2003) 

A nudix family protein 

probable 8-oxo-dGTP 

diphosphatase 1 
consistently had highest 

sequence identity generally 

ranging between 32-34%  

 

No HP domains found 

Majority of sequences 

correspond to COG0494 

containing 10042 proteins 
in 1869 species 

 

Four of the sequences 

correspond to COG0406 

containing 5118 proteins in 

1590 species 

Bacteria  

6544 17 A0A087BAT4 20%, Phosphatase 
(PDB 1H2E; Rigden et 

al., 2003) 

Only one representative 
contained a HP (SixA with 

a 26% sequence identity  

 
A nudix family protein 

probable 8-oxo-dGTP 
diphosphatase 1 

consistently had highest 

sequence identity generally 
ranging between 31-34% 

Majority of sequences 
correspond to COG0494 

containing 10042 proteins 

in 1869 species 
 

1 exception (E6K2B8) 
corresponds to COG0406 

containing 5118 proteins in 

1590 species 

Bacteria  

6541 16 G3AXW8 22%, glucosyl-3-

phosphoglycerate 

phosphatase (PDB 
4PZA; Zheng et al., 

2014)   

All representatives had 

phosphomutase-like 

protein 3 as the top hit with 
sequence identities 

generally ranging between 

30-34% 

NOG54269 containing 272 

proteins in 107 species 

 

Yeast 

 

Domain Fusion Detection 

 

To detect any other domains fused to the HPs in the clusters of interest an RPS BLAST (Reversed Position 

Specific BLAST) (Camacho et al., 2009) against the CD database of domains (Marchler-Bauer et al., 2015) was 

performed using the sequences from each cluster as the query. Clusters 6541, 6552, 6560 and 6563 had no 

domains fused to the HP. 

 

In cluster 6564 the majority of sequences had no other domain fused to the HP, although five had a fused 

RAPTOR N-terminal CASPase like domain (pfam14538; Ginalski et al., 2004). As the same domain architecture 

was expected for all members of the same cluster, and only a minority of the cluster had the RAPTOR domain 

fused there were doubts to its reliability (explained in detail below).  

 



All sequences from clusters 6544 and 6545 contained domains from the nudix hydrolase superfamily fused to the 

HP domain. The strongest specific match was to cd03673, Ap6A_hydrolase, Diadenosine hexaphosphate (Ap6A) 

hydrolase. 

 

Cluster 6560 

 

Searching each of the 38 cluster 6560 sequence identifiers at UniProt (Bateman et al., 2015) revealed that the vast 

majority of the sequences were from medically important bacteria living on or inside humans, including various 

species from the gram negative Bacteroides and Prevotella genera. 

 

In order to utilise the non-homology functional information contained in the STRING database, which deals with 

computationally predicted Clusters of Orthologous Groups (COG), it was determined that the sequences in cluster 

6560 correspond to Nonsupervised Orthologous Group (NOG) 14402. There are 48 proteins in 45 species in 

NOG14402, as at STRING v10 (Szklarczyk et al., 2015). STRING revealed a strong connection of NOG14402 to 

the following predicted functional partners; NOG04515 containing the regulatory protein SusR (Score 0.592), 

NOG00966 containing SusD/RagB family proteins (Score 0.513) and NOG00099 containing TonB linked outer 

membrane receptor proteins of the SusC/RagA family (Score 0.442). These connections arise from genomic 

context evidence. As Figure 4 shows NOG14402 (corresponding to cluster 6560) genes are frequently found 

neighbouring these functional partners, encoding Sus (starch utilization system) family proteins. The Sus loci and 

other polysaccharide utilization loci (PULs), termed Sus-like systems, are responsible for the acquisition of starch 

and other glycans in prokaryotes. 

 

Bacteria that reside in the human intestine forage for a broad diversity of complex glycans and polysaccharides, 

including those derived from dietary animal and plant tissues as well as host mucosal secretions (Koropatkin et 

al., 2012). Many of the animal and plant derived dietary glycans cannot be degraded by human genome encoded 

enzymes, so microbial fermentation, transforming indigestible complex glycans into products such as short-chain 

fatty acid that humans can absorb, has an crucial symbiotic role in helping humans access calories from otherwise 

indigestible nutrients (Flint et al., 2008; Koropatkin et al., 2012; McNeil, 1984). 



 

 

 

 

Bacteroides thetaiotaomicron, a gram-negative obligate anaerobe, is one of the best studied representatives of the 

Bacteroides genus, which are the most abundant microbes found in the human bowel (Hooper et al., 2002; Xu et 

al., 2003). Salyers and colleagues performed seminal work (Cho & Slayers, 2001; D’Elia & Salyers, 1996), 

discovering the multi-protein cell envelope-associated Sus system that provides the mechanism of how B. 

thetaiotaomicron metabolises starch, revealing a paradigm for acquisition of glycan that is universal in 

bacteroidetes (Martens et al., 2009). 

 

SusR, SusC and SusD, homologs of the genes consistently found neighbouring NOG14402 (corresponding to 

cluster 6560), are three of the eight adjacent genes comprising the Sus locus (susRABCDEFG) required to 

metabolise starch in B. thetaiotaomicron (Martens et al., 2009; Tancula et al., 1992). As shown in Figure 5, the 

Sus products are located in the periplasm and the outer membrane of the bacterium. They act by binding starch to 

the surface of cell before sequentially, degrading it into smaller oligosaccharides which they transport to the 

 

Figure 4: NOG14402 neighbourhood view. Diagram shows genes that occur repeatedly in close 

neighbourhood to NOG14402 (corresponding to cluster 6560) in prokaryotic genomes. Different coloured 

arrows represent NOGs. The direction of arrows indicates the direction of transcription. Genes located together 

are linked with a black line (maximum allowed intergenic distance is 300 base pairs). Small white triangles 

represent other neighbouring genes. The diagram is based on relationships discovered in STRING v10 

(Szklarczyk et al., 2015). 



periplasmic space. They oligosaccharides are then degraded further to glucose and other simple sugars before they 

are imported into the cell (Koropatkin et al., 2012). 

 

 

 

Figure 5: A model of the Sus system in Bacteroides thetaiotaomicron. The TonB-dependent transporter 

SusC works in concert with the starch-binding lipoproteins SusD, SusE, SusF and SusG that localise to the 

outer membrane (Shipman et al., 2000). SusD, SusE and SusF initiate starch binding. SusG, an outer 

membrane α-amylase, hydrolyses surface-bound starch (Reeves et al., 1997), generating cuts, releasing 

oligosaccharides larger than maltotriose (Martens et al., 2009). The oligosaccharides are transported into 

the periplasm via SusC in concert with the inner-membrane protein TonB. SusA and SusB are glycoside 

hydrolases that remain in the periplasm (Shipman et al., 2000), and further degrade the sequestered 

oligosaccharides into their component sugars prior to final transport to the cytosol (Martens et al., 2009). 

The presence of liberated maltose is sensed in the periplasm by the inner-membrane-spanning regulator 

SusR, which activates expression of the other Sus proteins. From Koropatkin et al. (2012). 

 
 



 

SusR is an inner-membrane-spanning regulator, whose C-terminus, that contains a DNA-binding motif, remains 

in the cytoplasm, while it’s N-terminus extends into the periplasmic space (D’Elia & Salyers, 1996). SusR 

activates the transcription of the other seven Sus proteins when the presence of starch, as small as the disaccharide 

maltose, is sensed by the periplasmic domain (D’Elia & Salyers 1996; Koropatkin et al., 2012). SusC and SusD 

localise to the outer membrane (Shipman et al., 2000). SusD initiates starch binding (Koropatkin et al., 2012) 

while SusC, in concert with the inner-membrane protein TonB, transports oligosaccharides into the periplasmic 

space (Koropatkin et al., 2012). 

 

B. thetaiotaomicron has the ability to utilize a wide range of glycans and polysaccharides, not just starch (Hooper 

et al., 2002; Xu et al., 2003). Sequencing the genome of  B. thetaiotaomicron revealed genes for over 80 PULs 

(Sonnenburg et al., 2010), whose products have been termed Sus-like systems as they work in a similar manner to 

Sus, but possess enzymes targeting glycans other than starch. Sus-like systems are common among Bacteroidetes 

(Koropatkin et al., 2012), with homologs of SusC and SusD present in every Sus-like PUL (Ravcheev et al., 

2013), although the other genes within Sus-like PULs frequently share little or no homology to the archetypical 

Sus locus (Martens et al., 2009). Sus-like systems have been identified for all the glycans that are common in 

tissues of animals and plants that enter the human intestine, with the exception of cellulose (Koropatkin et al., 

2012; Martens et al., 2011; Sonnenburg et al., 2010). Sus-like systems have evolved broadly, with the complexity 

of the glycan target correlated directly to the number of enzymes in a given system (Koropatkin et al., 2012). As 

well as encoding enzymes involved in breaking glycosidic linkages, some PULs also encode enzymes for removal 

of glycan modifications a prerequisite step in degrading the underlying backbone (Martens et al., 2009). These 

enzymes could potentially include phosphatase activities, such as the HPs from cluster 6560 that are frequently 

found in the genomic neighbourhood of SusR, SusC and SusD homologs. 

 

In animals and plants glucan phosphatases are essential for the metabolism of glycogen and starch respectively 

(Gentry et al., 2013; Kotting et al, 2010; Silver et al., 2014). Humans contain a single identified glucan 

phosphatase called laforin that dephosphorylates glycogen and is conserved in vertebrates (Gentry et al., 2007; 

Gentry et al., 2013; Worby et al., 2006). Plants contain two know glucan phosphatases called Starch EXcess4 

(SEX4) and Like Sex Four2 (LSF2) that dephosphorylate starch (Kotting et al., 2005; Santelia et al., 2011). 

 

In plants reversible phosphorylation solubilises the outer surface of starch permitting access to hydrolytic 

enzymes for processive degradation, however β-amylase the main enzyme responsible for degradation, is unable 

to degrade glucan chains past a phosphate group (Kotting et al., 2009; Meekins et al., 2015; Takeda & Hizukuri 



1981). For cyclical starch degradation to proceed these phosphate groups must be removed by the SEX4 and 

LSF2 glucan phosphatases (Kotting et al., 2009; Santelia et al., 2011). 

 

Starch is phosphorylated at both the C3- and C6-positions, while glycogen is phosphorylated at the C2-, C3-, and 

C6-positions. Carbohydrate substrates are dephosphorylated by glucan phosphatases in a position specific manor, 

which differs significantly between the three glucan phosphatases. Laforin preferentially dephosphorylates the 

C3- position of glycogen, SEX4 shows a C6 preference of starch glucose and LSF2 is C3 specific (Meekins et al., 

2015). 

 

A hypothesis is that the HPs from cluster 6560 in bacteria could be carrying out a similar role to the glucan 

phosphatases in animals and plants. In the intestine, where an animal is digesting food composed of plant and 

animal tissues, the intestinal bacteria may have evolved mechanisms to exploit otherwise indigestible glucans. By 

dephosphorylating glucans, the HPs of cluster 6560 could permit the Sus (and Sus-like) enzymes in their genomic 

neighbourhood to further metabolise the glucans.  

 

As the Sus and Sus-like products are located in the outer membrane and the periplasm of bacteria, a representative 

sequence (Accession number E5CGZ1 from a Bacteroides) was submitted to subcellular localisation prediction 

servers to specifically distinguish between bacterial secreted extracellular proteins from those proteins that are 

localised and retained in periplasm, to better determine where the HPs fit into the putative Sus-like pathway. The 

length of the saccharide the HPs encounter also depends on whether the protein is periplasmic or extracellular. 

Periplasmic proteins would most likely encounter smaller substrates, while secreted proteins would most likely 

encounter larger substrates. 

 

A signal peptide was detected by SignalP 4.1 (Emanuelsson et al., 2007; Petersen et al., 2011), PrediSi (Hiller et 

al., 2004), Signal-3L (Shen & Chou, 2007) and PSORTb v3.0.2 (Yu et al., 2010), however Phobius (Käll et al., 

2004; Käll et al., 2007) did not detect a signal peptide. For PSORTb the final predicted location of the protein is 

unknown, while PrediSi, LocTree3 (Goldberg et al., 2014) and SRTpred (Garg & Raghava, 2008) predicted it is 

secreted. In contract the SOSUIGramN (Imai et al., 2008) and SLP-local (Matsuda et al., 2005) servers both 

predict the protein is localised in the periplasm. Gneg-mPLoc (Shen & Chou, 2010) predicted both cytoplasm and 

periplasm, although cytoplasmic localisation cannot be correct as the general consensus is there is a signal peptide 

present. 

 

In gram-negative bacteria proteins containing signal peptides are localised to the periplasmic compartment by 

default, and a different mechanism is required for them to be secreted (Pugsley et al., 1997). The server results 



reveal the HPs of cluster 6560 do not remain in the cytoplasm, as the general consensus is that they contain a 

signal peptide, although a confident distinction between secretion and periplasmic localisation was not made. 

There are lots of possibilities of different substrates of various sizes for these HPs. Homology modelling 

combined with conservation mapping was used to explore the size of a predicted conserved binding site, to shed 

light on the size of potential ligands. 

 

Twenty homology models were constructed for a representative of cluster 6560 (Accession number E5CGZ1 – 

sequence edited to remove the N-terminal region before the start of the first domain), with RosettaCM (Combs et 

al., 2013), using three homologs (PDB IDs: 4FDT, 2GFI and 1QWO) identified by HHpred (Biegert et al., 2006; 

Söding et al., 2005) as templates. The best scoring model (Figure 6A) obtained a Rosetta REscore (Combs et al., 

2013) of -130.152 and Qmean score (Benkert et al., 2008; Benkert et al., 2009) of 0.671, initially indicating a 

high quality model. When the top scoring models were viewed and aligned in PyMOL, they were similar 

throughout their structures. This consistency between the models increased confidence in the modelled binding 

site that a ligand was subsequently docked into.  

 

 

 

 

 

 

Figure 6. Two views of the top scoring model from each cluster. A-E show cartoon representations coloured blue 

(N-terminus) to red (C-terminus), with sticks for the conserved RHG residues. F-K show sequence conservation 

mapping onto the molecular surfaces with CONSURF (Ashkenazy et al., 2010; Celniker et al., 2013; Glaser et al., 

2003; Landau et al., 2005). Sequence conservation is displayed as a spectrum of colours from blue (indicating 

conservation) to red (indicating lack of conservation). Images generated using the PyMOL Molecular Graphics 

System, Version 1.3 Schrödinger, LLC. 

 



Sequence conservation was mapped onto the top scoring model with CONSURF (Ashkenazy et al., 2010; 

Celniker et al., 2013; Glaser et al., 2003; Landau et al., 2005), using a MSA of the sequences in cluster 6560 

prepared with MUSCLE v3.8.31 (Edgar, 2004) in Jalview 2.8.1 (Waterhouse et al., 2009). Conservation mapping 

revealed a large strongly conserved patch (Figure 6F). In the model the RHG motif residues, which include the 

histidine that is phosphorylated during catalysis, were conserved and surrounded by other conserved residues. 

Viewing the molecular surface revealed a hole through the centre of the protein, which is extremely unusual and 

likely a localised modelling error. One side of this binding site pocket was more conserved than the other, and 

was closer to the RHG motif, so it was assumed the true site for binding, for manual docking of a ligand prior to 

docking with the RosettaLigand tool (Combs et al., 2013) to identify the optimum ligand binding pose. The size 

of the pocket comfortably accommodated the manual docking of alpha-maltose 1-phosphate, a phosphorylated 

glyan, so a library of conformers for this ligand where used for docking at the ROSIE server (Lyskov et al., 

2013). 

 

The library of conformers was prepared using Frog2 (Miteva et al., 2010). ROSIE produced 1000 docking 

prediction structures, that were rank ordered according to interface_delta_X scores (the difference between the 

total Rosetta energy score with the ligand bound, and the ligand unbound). This interface energy metric 

discriminates between well and poorly modelled ligand binding poses based on score, identifying conformations 

and relative orientations that minimises the Rosetta score function. The ten lowest scoring poses were visually 

evaluated using PyMOL. 

 

When the docking results were compared against the conservation mapping from CONSURF it was revealed that 

the best scoring ligand binding pose predictions docked alpha-maltose 1-phosphate to the less conserved side of 

the hole through the model. In all ten lowest scoring poses the phosphate from the alpha-maltose 1-phosphate 

ligand was oriented away from the RHG motif and was generally not touching the conserved regions. The 

localised modelling errors that resulted in the hole through the centre of the structure were likely reducing the 

quality of the modelled binding site. It appeared the poorly modelled areas in the model were preventing the 

ligands phosphate from binding in the correct position. Although the docking did not successfully place the ligand 

phosphate at the heart of the catalytic site in the phosphate pocket, it did reveal that due to the size of the binding 

site and conserved regions, glycans larger than alpha-maltose 1-phosphate could not be accommodated.  

 

Cluster 6552 

 

Searching each of the 27 cluster 6552 sequence identifiers at UniProt (Bateman et al., 2015) revealed that the 

proteins are from various fungi including species of agricultural importance such as Magnaporthe oryzae (Rice 



blast fungus), Gibberella zeae (Wheat head blight fungus) and Pyrenophora tritici-repentis (Wheat tan spot 

fungus). 

 

The sequences in cluster 6552 correspond to NOG23976. There are 62 proteins in 52 species in NOG23976 as at 

STRING v10. STRING revealed a strong connection of NOG23976 to the predicted functional partners riboflavin 

synthase alpha chain (COG0307, Score 0.889) and 3-phosphoadenosine 5-phosphosulfate sulfotransferase (PAPS 

reductase)/FAD synthetase and related enzymes (COG0175, Score 0.859). These connections arise from database 

evidence, as the NOG23976 proteins and both of the predicted functional partners are pathway neighbours 

involved in the manually curated riboflavin metabolism annotated KEGG (Kyoto Encyclopedia of Genes and 

Genomes) pathway (imported from KEGG (July 2014)) (Kanehisa & Goto, 2000; Kanehisa et al., 2014). 

 

Riboflavin (Vitamin B2) is the substrate precursor for the biosynthesis of the essential flavin coenzymes, flavin 

adenine dinucleotide (FAD) and flavin mononucleotide (FMN) (Birkenmeier et al., 2014; Hasnain et al., 2013; 

Hiltunen et al., 2012), which are essential for all living organisms and have roles in diverse redox reactions and 

other processes such as repair of DNA, bioluminescence and light sensing (Fischer & Bacher, 2005). Plants, 

fungi, archaea and bacteria are able to synthesize riboflavin de novo (Birkenmeier et al., 2014; Hasnain et al., 

2013; Hiltunen et al., 2012), however mammals and other animals cannot so they must obtain it from a dietary 

supply (Bacher et al., 2000; Powers, 2003). Riboflavin is commercially highly valuable and is used in 

pharmaceuticals, cosmetics, animal feed supplements and the food industry (Shi et al., 2009; Stahmann et al., 

2000). 

 

The biosynthetic pathway responsible for synthesising riboflavin is similar in yeast, bacteria and plants (Bacher et 

al., 2000; Bacher et al., 2001). The filamentous fungus Ashbya gossypii overproduces riboflavin naturally and is 

now commercially one of the top producers by microbial fermentation (Stahmann et al., 2000). Osiewacz (2002) 

describes the synthesis of riboflavin in A. gossypii in which all enzymes involved in the process are known, 

except for the dephosphorylation of the 5-amino-6-ribitylamino-2,4 (1H,3H)-pyrimidinedione-5’-phosphate 

(ArPP), which is catalysed by a phosphatase that has yet to be characterised (Osiewacz, 2002). Starting with 

ribulose-5-phosphate (Ribu5P) and guanosine triphosphate (GTP) (Bacher, 1991), the reactions proceed as shown 

in Figure 7, resulting in riboflavin which is then phosphorylated to FMN and adenylated to FAD (Hiltunen et al., 

2012). In A. gossypii, reduction of the ribosyl residue occurs before deamination of diamino pyrimidinone, in 

contrast to bacteria where the order of the reactions is reversed (Bacher, 1991; Burrows & Brown 1978). 

 

 

 



 

 

The phosphatase responsible for ArPP to ArP has not been identified in any organisms (Birkenmeier et al., 2014; 

Gerdes et al., 2012; Hasnain et al., 2013; Roje, 2007). It is still not clear at present if the dephosphorylation is 

implemented by a single specific phosphatase or numerous enzymes that are less specific (Hiltunen et al., 2012). 

Abbas & Sibirny (2011) hypothesise that the phosphatase involved in the biosynthesis of riboflavin is most likely 

 

 

Figure 7: Riboflavin biosynthesis pathway in Ashbya gossypii. An enzyme catalysing a dephosphorylation 

of ArPP in not characterised. Abbreviations: UnkPh (unknown phosphatase),  GTP guanosine triphosphate, 

Ribu5P (ribulose-5’- phosphate),  DARPP 2,5-diamino-6-ribosylamino-4 (3H)-pyrimidinone-5’-phosphate / 

(2,5-diamino-6-hydroxy-4-(5’-phosphoribosylamino)-pyrimidine), DArPP (2,5-diamino-6-ribitylamino-4(3H)-

pyrimidinone-5’-phosphate), ArPP  5-amino-6-ribitylamino-2,4 (1H,3H)-pyrimidinedione-5’-phosphate / (5-

amino-6-(5’-phosphoribitylamino)uracil), ArP  5-amino-6-ribitylamino-2,4 (1H,3H)-pyrimidinedione / (4-(1-

D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine), DHBP (3,4-dihydroxy-2-butanone 4-phosphate), DRL 

6,7-dimethyl-8-ribityllumazine / (6,7-dimethyl-8-(1-D-ribityl)lumazine, Rib1 GTP cyclohydrolase II, Rib2 

DArPP deaminase, Rib3 DHBP synthase, Rib4 DRL synthase, Rib5 riboflavin synthase, Rib7 DARPP 

reductase. Adapted from Osiewacz (2002) and Ledesma‐Amaro et al. (2014). 



substrate specific, as a nonspecific phosphatase would not be able to distinguish between the phosphorylated 

products of GTP cyclohydrolase II, reductase and deaminase (Abbas & Sibirny, 2011). 

 

As manually curated database evidence from KEGG indicated that NOG23976 (corresponding to the HPs in 

cluster 6552) proteins are responsible for the previously uncharacterised substrate specific catalysis 

dephosphorylating ArPP to ArP in the riboflavin biosynthesis pathway, homology models were created for a 

representative of this cluster to dock a library of ArPP conformers to explore how the substrate potentially binds. 

The reference that KEGG based this assignment on was not found. KEGG gene annotations are accomplished by 

assigning genes to KEGG Orthology IDs (KOs) as a functional identifier. KOs are manually curated based on the 

literature information as well as sequence similarity. It is possible that the coverage of the sequence similarity 

data is not highly accurate. At present the phosphatase implicated in the pathway is still illusive in published 

literature. 

 

Twenty homology models were constructed for a representative of cluster 6552 (Accession number B2VS43 – 

sequence edited to remove the N-terminal region before the start of the first domain and the C-terminal region), 

with RosettaCM, using three homologs identified by HHpred (PDB IDs: 1ND6, 3IT3 and 4JOB) as templates. 

The best scoring model (Figure 6B) obtained a Rosetta REscore of -225.364 and Qmean score of 0.656, indicating 

a high quality model. When the top scoring models were viewed and aligned in PyMOL, they were generally 

similar throughout their structures although they differed slightly in the light blue region shown in figure 6B that 

is not near the catalytic site. This general consistency between the models increased confidence in the modelled 

binding site that the ArPP ligand was subsequently docked into. 

 

Sequence conservation was mapped onto this top scoring model with CONSURF (Ashkenazy et al., 2010; 

Celniker et al., 2013; Glaser et al., 2003; Landau et al., 2005), using a MSA of the sequences in cluster 6552 

prepared using MUSCLE in Jalview. Conservation mapping revealed a large strongly conserved patch on the 

molecular surface forming a binding pocket (Figure 6G). In the model the RHG motif residues, which includes 

the histidine that is phosphorylated during catalysis, were conserved and surrounded by other conserved residues. 

The catalytic core RHG motif was positioned at the base of the conserved binding pocket. The regions of the 

structures that differed between the aligned top scoring models (light blue in Figure 6B), was shown to not be 

particularly well conserved between the sequences of cluster 6552. 

 

A library of conformers of ArPP was docked into the binding site of the model using the RosettaLigand tool 

(Combs et al., 2013) at the ROSIE Server (Lyskov et al., 2013). The library of conformers was prepared using 

Frog2 (Miteva et al., 2010). ROSIE produced 1000 docking prediction structures that were rank ordered 



according to interface_delta_X scores. The ten lowest scoring poses were visually evaluated using PyMOL, 

revealing that ArPP was predicted to be positioned “snuggly” in the conserved binding pocket identified by 

CONSURF. ArPP was touching and surrounded by conserved residues, however its phosphate was oriented away 

from the RHG motif. Although ArPP was located in the conserved binding cleft, the docking had not positioned 

ArPP’s phosphate in the phosphate pocket. Errors in the models structure around the binding site could explain 

this result. 

 

Clusters 6541 and 6563  

 

Cluster 6541 and 6563 are neighbouring clusters in the network generated in CLANS using an E-value cut-off 

value of ≤1e-40 (Figure 3). When less stringent E-value cut-offs are used these two clusters associate together into 

one cluster. Searching each of the sequence identifiers at UniProt revealed that the 53 proteins in cluster 6563 are 

from various fungi, and the 16 proteins in cluster 6541 are more specifically found in yeast. 

 

The sequences in both cluster 6541 and cluster 6563 are most similar to PMU1 from Saccharomyces cerevisiae in 

the STRING database, corresponding to NOG54269. There are 272 proteins in 107 species in NOG54269 as at 

STRING v10. A bidirectional / reciprocal genome BLAST (Altschul et al., 1990; Altschul et al., 1997) verified 

the relationship of cluster 6541 and 6563 sequences to PMU1. 

 

PMU1 encodes a putative phosphomutase found in S. cerevisiae. Elliot et al. (1996) named it PMU1 for Phospho-

Mutase homologue, as the encoded protein contains a region homologous to the active site of phosphoglycerate 

mutases from various organisms (Elliot et al., 1996). STRING uncovered two substrates for PMU1 

(corresponding to NOG54269), 5'-Phosphoribosyl-4-carboxamide-5-aminoimidazole (AICAR) and trehalose-6-

phosphate. Both of these connections are based on experimental evidence (Rébora et al., 2005).  

 

First STRING revealed a strong connection of NOG54269 to the predicted functional partners AICAR 

transformylase / IMP cyclohydrolase (COG0138, Score 0.914), formyltetrahydrofolate synthetase (COG2759, 

Score 0.839) and 5,10-methylene-tetrahydrofolate dehydrogenase / methenyl tetrahydrofolate cyclohydrolase 

(COG0190, Score 0.810). Overexpression of PMU1 (NOG54269 corresponding to clusters 6541 and 6563) 

suppresses the histidine auxotrophy of yeast ADE3 ADE16 ADE17 triple mutants. ADE16 ADE17 mutants lack 

AICAR transformylase activity (COG0138), while ADE3 mutants lack a trifunctional enzyme with 

methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase (COG0190) and 

formyltetrahydrofolate synthetase (COG2759) activities, that synthesis 10-formyl tetrahydrofolate (THF), a co-

substrate required for biosynthesis of IMP (Figure 8). 



 

 

AMP & histidine biosynthesis pathways are co-regulated at the level of transcription in response to the 

availability of adenine (Daignan-Fornier & Fink, 1992), and significantly contribute to AICAR synthesis. As well 

as being an intermediate metabolite at the junction between these two pathways, AICAR is also a regulatory 

molecule and is critical in directly activating expression of ADE genes when adenine is absent (Rébora et al., 

2005). 

 

 

 

Figure 8: Histidine and IMP biosynthesis pathways. The reactions supply 10-formyl-THF for IMP 

biosynthesis. Abbreviations: FGAR 5’-phosphoribosyl N-formylglycinamide, IMP inosine 5’-monophosphate, 

PRPP 5-phosphoribosyl-1-pyrophosphate, SAMP adenylosuccinate, XMP xanthosine 5’-monophosphate. 

Gene names are italicized. From Rébora et al. (2005). 



AICAR overproduction and accumulation is toxic for yeast cells (Rébora et al., 2005). Tibbetts & Appling (2000) 

hypothesise that the histidine requirement of ADE3 ADE16 ADE17 triple mutant strains is due to AICAR 

accumulation, which is responsible for the inhibition of a late step of histidine biosynthesis (Tibbetts & Appling, 

2000). PMU1 bypass’s the negative effect of AICAR accumulation. PMU1 overexpression suppresses the 

histidine auxotrophy of ADE3 ADE16 ADE17 triple mutants, by detoxifying AICAR. PMU1 presumably directly 

modifies AICAR which is a monophosphate nucleotide derivative, by transforming it into another product 

(Rébora et al., 2005). 

STRING also revealed a strong connection of NOG54269 to the predicted functional partner trehalose-6-

phosphate phosphatase (COG1887, Score 0.776). This connection arose from experimental evidence of a protein-

protein interaction between the NOG54269 members and TPS2 (the gene encoding the 100-kDa phosphatase 

subunit of the trehalose-6-phosphate synthase/phosphatase complex) in S. cerevisiae. Overexpression of PMU1 in 

yeast suppresses the temperature sensitivity of mutants lacking TPS2 whose protein product is involved in the 

biosynthesis of trehalose (Elliott et al., 1996). 

Synthesis of the disaccharide trehalose is well correlated with high temperatures (Hottiger et al., 1992; De 

Virgilio et al., 1991; Neves & Francois, 1992), and in vivo and in vitro evidence suggests it is a thermoprotectant, 

acting by stabilising proteins and preventing heat inactivation (Colaco et al., 1992; Hottiger et al., 1994). In yeast 

cells high concentrations of trehalose are well correlated with heat shock resistance (Neves & Francois 1992), and 

genetic evidence suggests it is important for thermotolerance (De Virgilio et al., 1994). 

 

Figure 9 shows the two step reaction to synthesise trehalose in yeast (Elliott et al., 1996). TPS2 mutant strains that 

fail to make the thermoprotectant trehalose and accumulate trehalose-6-phosphate have been isolated. These 

mutants lacking TPS2 showed significant heat shock sensitivity (Elliott et al., 1996). In the stationary phase of 

TPS2 mutants, both the presence of trehalose-6-phosphate and the lack of trehalose contribute to heat shock 

sensitivity, while in the log phase temperature sensitivity is solely due to trehalose-6-phosphate accumulation. 

Elliott et al. (1996) suggest the accumulation of trehalose-6-phosphate in TPS2 mutants may be toxic to cells 

inducing sensitivity to heat shock (Elliott et al., 1996). 

 

Overexpression of PMU1 in TPS2-deleted cells reduces the toxic trehalose-6-phosphate levels and suppresses the 

temperature sensitivity. PMU1 prevents the accumulation of toxic trehalose-6-phosphate by removing it 

somehow, possibly by transferring the phosphate to another molecule. PMU1 does not restore trehalose to wild 

type levels and so cannot restore heat shock resistance fully (Elliott et al., 1996). 

 

 



 

 

As STRING revealed strong connections of cluster 6541 and 6563 HPs to the substrates AICAR and trehalose-6-

phosphate, based on the experimental evidence outlined above, these two substrates where docked into homology 

models of a representative from each of these clusters. As the experimental evidence is drawn from studies 

involving overexpression of the protein responsible for catalysis, AICAR and trehalose-6-phosphate are not likely 

to be the primary substrates of the HPs in these clusters. The docking results could however potentially reveal the 

likelihood of other sugar phosphates, as the targets of these enzymes. 

 

RosettaCM was used to construct twenty homology models for a representative of cluster 6541 (Accession 

number G3AXW8) and cluster 6563 (Accession number R8BHM4). Both sequences used to construct the models 

were edited to remove the N-terminal region before the start of the first domain. The structures of the same three 

 

Figure 9: Trehalose biosynthesis in yeast. Step 1: Tps1 (trehalose-6-phosphate synthase) transfers the 

glucosyl residue from UDP-glucose to glucose-6-phosphate producing  trehalose-6-phosphate. Step 2: Tps2 

(trehalose-6-phosphate phosphatase) cleaves the phosphate from trehalose-6-phosphate yielding trehalose. 

From Elliott et al. (1996). 

 



homologous proteins (PDB IDs: 1H2E, 4IJ5 and 4PZA) were used as model templates for both clusters, as 

identified by HHpred. 

 

When the top scoring models of the cluster 6541 representative were viewed and aligned in PyMOL, they were 

generally similar throughout their structures although they differed slightly in the yellow and light blue regions 

shown in Figure 6D. The light blue region is not located near the catalytic site, but the potential poor modelling of 

the yellow region closer to the catalytic site may interfere with ligand docking. When the top scoring models of 

the cluster 6563 representative were aligned in PyMOL, they were also generally similar throughout their 

structures although there was a slight divergence in the light blue α-helix at the end furthest from the catalytic 

(Figure 6E). Inspecting the regions around the catalytic core of the RHG motif in the “cartoon” view, for the top 

scoring model from each cluster, revealed the α-helices, β-sheets and loop structures in these regions shared 

similarities in terms of orientation and proximity to the RHG motif. This was expected as the two clusters are 

neighbours in CLANS generated using an E-value cut-off value of ≤1e-40 (Figure 3), and associate together into 

one cluster when less stringent E-value cut-offs are used. This sequence similarity displayed in the CLANS 

network, indicating a functional relationship among the sequences, was confirmed when the HHpred server 

returned the same three PDB homologs to use as templates in modelling for the representative of both the clusters. 

 

Cluster 6541’s best scoring model (Figure 6D) obtained a Rosetta REscore of -186.412 and Qmean score of 

0.629, while cluster 6563’s best scoring model (Figure 6E) had similar scores of -185.25 for Rosetta REscore and 

0.624 for its Qmean score. Sequence conservation was mapped onto these top scoring models with CONSURF, 

using a MSA of the sequences in each protein’s respective cluster prepared with MUSCLE. Conservation 

mapping of cluster 6541’s top scoring model revealed an extremely large strongly conserved patch covering 

almost an entire side of the molecular surface, including the suspected binding pocket (Figure 6I). In this model 

the RHG motif residues, positioned at the base of the binding pocket, are conserved and surrounded by other 

conserved residues. Viewing the molecular surface conservation map of cluster 6563’s top scoring model revealed 

a hole through the centre of the protein (Figure 6J), and that the larger opening of this thoroughfare, suspected to 

be the binding site due to its proximity to the RHG motif, was not as conserved as the binding site in cluster 6541. 

This signalled a modelling error in the binding region of cluster 6563’s model. 

 

The RosettaLigand tool was used to dock a library of conformers of trehalose-6-phosphate into the binding sites 

of the top scoring model from cluster 6541 followed by the top scoring model from 6563. Next a library of 

conformers of AICAR was docked into the top scoring model from each cluster. The ten lowest interface_delta_X 

scoring docking predictions for each combination of dockings (trehalose-6-phosphate docked to the top scoring 



cluster 6541 model, trehalose-6-phosphate docked cluster 6563 model, AICAR docked to cluster 6541 model and 

AICAR docked cluster 6563 model) were visually evaluated using PyMOL. 

From the four combinations of dockings, AICAR docked to top scoring cluster 6563 model yielded the best 

results. For all ten lowest scoring poses from this docking the AICAR substrate was positioned “snuggly” in the 

conserved binding pocket identified by CONSURF. The AICAR ligand was touching and surrounded by 

conserved residues with its phosphate pointing towards the histidine of the RHG motif, in the phosphate pocket 

(Figure 10). 

 

 

 

 

 

Figure 10. View of AICAR docked into the top scoring cluster 6563 homology model.  

(A) Shows the docking pose of AICAR in the top scoring homology model for cluster 6563. The surface of 

the model is transparent revealing AICAR’s phosphate positioned in the phosphate pocket pointing towards 

the catalytic histidine residue. (B) Shows sequence conservation mapping onto a molecular surface with 

CONSURF (Ashkenazy et al., 2010; Celniker et al., 2013; Glaser et al., 2003; Landau et al., 2005) 

Sequence conservation is displayed as a spectrum of colours from blue (indicating conservation) to red 

(indicating lack of conservation). The area where AICAR is best predicted to dock is highly conserved. 

Images generated using the PyMOL Molecular Graphics System, Version 1.3 Schrödinger, LLC. 



When trehalose-6-phosphate was docked into the same cluster 6563 homology model, the majority of the lowest 

ten scoring docking predictions position trehalose-6-phosphate in the same highly conserved binding site, 

however the is phosphate oriented closer to the arginine (R) than the histidine (H) in the RHG motif. 

 

The results from docking the same two substrates to the top scoring homology model from clusters 6541 

representative where not as promising. The majority of the lowest scoring poses predicted by the RosettaLigand 

tool position the substrates in the highly conserved binding site, however the phosphates are oriented away from 

the RHG domain of the model. 

 

Cluster 6564 

 

Searching each sequences identifier at UniProt revealed the sequences were found in an array of insects including 

Drosophila melanogaster, Nasonia vitripennis (Parasitic wasp), Apis mellifera (Honeybee), and various 

mosquitos (Culex quinquefasciatus, Aedes aegypti and Anopheles gambiae). 

 

The majority of representatives had multiple inositol polyphosphate phosphatase 1 as the top hit when BLAST 

was used to search the sequences against Swiss-Prot database, with sequence identities generally ranging between 

23-30%. Five representatives however had Regulatory-Associated Protein of mTOR (RAPTOR) as the top hit 

ranging between 41-43%. RAPTOR is not a HP so a domain fusion, could explain this result. The RPS BLAST 

against the CD database also revealed the majority of sequences had no other domain fused to the HP, although 

five had a top hit of a RAPTOR N-terminal CASPase like domain (pfam14538; Ginalski et al., 2004). As the 

same domain architecture was expected for all members of the same cluster, and only a minority of cluster 6564 

have the RAPTOR domain fused there were doubts to its reliability.  

 

In the STRING database the majority of sequences in cluster 6564 are most similar to a multiple inositol 

polyphosphate phosphatase 1-like protein (LOC725931) from the honey bee A. mellifera, corresponding to 

NOG30599. Five of the sequences were most similar to the GF20313 gene product, from transcript GF20313-RA 

involved in the mTOR signalling pathway in Drosophila ananassae, corresponding to NOG03700. 

 

Results from three representative sequences (Accession numbers A0A026VZI3, L7M867 and W8BG64) 

submitted to signal peptide detection and subcellular localisation prediction servers determined that the RAPTOR 

connection was an annotation error rather than a legitimate connection, so STRINGS connection to NOG03700 

was dismissed. The SignalP 4.1 (Emanuelsson et al., 2007; Petersen et al., 2011) and Phobius (Käll et al., 2004; 

Käll et al., 2007) servers both detected a signal peptide. TargetP 1.1 (Emanuelsson et al., 2000; Emanuelsson et 



al., 2007) predicted that the subcellular localisation of the protein is the secretory pathway, while PSORTII 

(Nakai & Horton, 1999) gave conflicting results predicting the endoplasmic reticulum, mitochondria and nucleus. 

Although the conflicting localisation results did not lead to a confident prediction of location, the general 

consensus is that there is signal peptide present, and the protein is therefore secreted or localised inside an 

organelle and not maintained in the cytoplasm. As RAPTOR is a cytosolic protein a fusion of the RAPTOR 

domain to the cluster 6564 HPs does not make sense so it is likely an annotation error. 

 

The majority of the sequences did not have this fusion error and corresponded to NOG30599. There are 452 

proteins in 184 species in NOG30599 as at STRING v10. STRING revealed a strong connection of NOG30599 to 

the predicted functional partners SPX domain-containing protein involved in vacuolar polyphosphate 

accumulation (COG5036, Score 0.997), vacuolar transporter chaperone (COG5264, Score 0.997) and 

NOG212389 (Score 0.997) which contains various transporters including phosphate transporters. These 

connections arise from co-expression in S. cerevisiae, Schizosaccharomyces pombe and Plasmodium falciparum. 

 

COG5264’s vacuolar transporter chaperone (VTC) complex is involved vacuolar polyphosphate accumulation 

(Ogawa et al., 2000) as well as several other membrane related processes including microautophagy (Uttenweiler 

et al., 2007), membrane trafficking (Müller et al., 2003) and non-autophagic vacuolar fusion (Müller et al., 2002). 

COG5036’s SPX domain-containing proteins are also involved in vacuolar polyphosphate accumulation. 

Inorganic polyphosphate (polyP), a linear polymer of three to thousands of inorganic phosphate (Pi) residues 

linked by high-energy phosphoanhydride bonds, is found in all organisms throughout nature (Kornberg, 1999; 

Ogawa et al., 2000). 

 

In S. cerevisiae the PHO pathway regulates Pi homeostasis. During normal and high Pi conditions the PHO 

pathway is inactive. Under Pi limiting conditions transcription of the PHO operon genes is activated, which act to 

optimize Pi uptake and utilization (Secco et al., 2012). These genes encode secreted APs and the related proteins 

that increase Pi recovery from the extracellular sources including high-affinity transporters (Dick et al., 2011; 

Mouillon & Persson, 2006; Oshima, 1997). A subset of these proteins contain the SPX domain, which has been 

shown to be key regulators of Pi homeostasis, and is conserved among all major eukaryotes (Secco et al., 2012). 

 

The VTC complex, that is induced under Pi limiting conditions, functions as a heterodimer comprised of Vtc1, 

Vtc4 (the catalytic subunit) and either Vtc2 or Vtc3 (Secco et al., 2012). It synthesizes PolyP, using ATP as a 

substrate, and then transports the phosphate polymers to the lumen of the vacuole (Hothorn et al., 2009). Under Pi 

deficiency production of intracellular and extracellular protein phosphatases, that hydrolize phosphate esters 

releasing inorganic phosphate (Pi), is also induced in order to increase levels of free Pi by scavenging Pi from 



macromolecules (Baldwin et al., 2001; Duff et al., 1994; Dick et al., 2011). An example is the SPX domain 

containing Gde1, responsible for the hydrolysis of glycerophosphocholine into choline and glycerophosphate 

(Secco et al., 2012). The PHO5 gene (and its homologs PHO11and PHO12) encodes an AP which is localised to 

the periplasmic space (Ogawa et al., 2000). 

 

The APs are nonspecific, and hydrolyze a variety phosphorylated substrates, including nucleic acids, 

phosphosugars, phospholipids, and phosphoproteins (Baldwin et al., 2001; Dick et al., 2011; Ogawa et al., 2000). 

The induction of phosphatase activity in response to Pi starvation is a common phenomenon among organism 

acquiring Pi from the environment (Dick et al., 2011). 

 

A hypothesis is that in insects the HPs contained in cluster 6564 (corresponding to NOG30599) are releasing Pi 

from macromolecules, to be used in vacuolar polyphosphate accumulation by the VTC and other SPX domain-

containing proteins that are co-expressed with the phosphatases. As the APs involved in scavenging Pi are non-

specific there are many potential substrates for the proteins contained in cluster 6564. 

 

Twenty homology models were constructed for a representative of cluster 6564 (Accession number Q9W438 - 

sequence edited to remove the N-terminal region before the start of the first domain), with RosettaCM, using three 

homologs identified by HHpred (PDB IDs: 2GFI, 1QWO and 1QFX) as templates. The best scoring model 

(Figure 6C) obtained a Rosetta REscore of -78.233 and Qmean score of 0.641. When the top scoring models were 

viewed and aligned in PyMOL, they were generally similar throughout their structures although they differed 

slightly in dark blue α-helix shown in Figure 6H. As this model is thought to be of a broad range AP involved in 

scavenging Pi there are potentially a variety of possible phosphorylated substrates. If the AP dephosphorylates 

small substrates the potential error in this varying loop, which is relatively far away from the catalytic site, should 

not affect substrate binding. Sequence conservation mapping onto the top scoring model revealed that this 

particular α-helix is not highly conserved between the cluster 6564 sequences. As with the top scoring model from 

cluster 6560, viewing the molecular surface revealed an unlikely hole through the centre of the protein (FIGX), 

indicating a probable confined modelling error. The molecular surface was particularly conserved in a large patch 

on one side of this hollow, suggesting the potential of this possible broad range phosphatase to catalyse large 

substrates.  The strongly conserved patch lay above the catalytic RHG motif, pointing towards the binding site for 

substrates. 

 

Due to the hole through the centre of the model that indicated a modelling error in the binding site combined with 

the literature research revealing that as the APs involved in scavenging Pi are non-specific (hydrolysing a variety 



of substrates including phosphosugars, phospholipids, phosphoproteins and nucleic acids), docking was not 

performed on the homology model from this cluster. 

 

Clusters 6544 and 6545 

 

Although the sequences from clusters 6544 and 6545 were identified as containing domains from the nudix 

hydrolase superfamily fused to the HP domain, due to time limitations their functions where not explored in 

depth. These HPs found in a variety of bacteria almost certainly house novel functions. Domain fusions are a 

potent source of clues to function. Future work would involve further literature research into the nudix domains to 

shed light on potential substrates for the fused HP domain, and subsequent docking of potential substrates 

identified into the created homology models. 

 

CONCLUSION 

 

In conclusion this study illustrates the combination of functional information form a variety of different 

bioinformatics sources. This project reports the successful collection of the complete set of HP superfamily 

sequences using an iterative database search strategy. Large groups of uncharacterised proteins with potential 

unknown novel functions where identified as planned. STRING was utilised to provide strong evidence of 

potential ligands. State of the art homology modelling and metabolite docking techniques were also employed, 

with mixed results. In general the dockings results did not provide strong evidence of function, as metabolite 

docking relies on the challenging task of predicting high quality homology models. Modelling can be 

temperamental as slight changes in a predicted structure can lead to loop formation that blocks the binding site 

preventing successful prediction of a substrate ligand pose completely. Although some of the regions in the 

models preventing phosphates binding the correct space, conserved patches identified by conservation mapping 

indicate the size of likely substrates. 

 

Each method has its own set of benefits and pitfalls, but by combining approaches for a holistic view, the 

likelihood of successfully recognising new functions increases. The ligands identified here highlight the potential 

of computational methods to narrow down possible metabolites for future experimental characterisation. Although 

predicting function remains a challenge the approaches used here for the HP superfamily are applicable to other 

superfamilies. 
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APPENDICES 

 

Appendix 1 

 

The HP branch 1 representative sequences used as queries to iteratively search the UniRef90 database (Bateman 

et al., 2015; Suzek et al., 2011) using Jackhmmer (Eddy, 1998; Finn et al., 2011). 

 

Accession 

Number 

Entry Name Protein Gene Organism 

P00950 PMG1_YEAST Phosphoglycerate 

mutase 1 

GPM1 Saccharomyces 

cerevisiae 

P07738 PMGE_HUMAN Bisphosphoglycerate 

mutase 

BPGM Homo sapiens 

P36069 PMU1_YEAST Probable 

phosphomutase PMU1 

PMU1 Saccharomyces 

cerevisiae 

P76502 SIXA_ECOLI Phosphohistidine 

phosphatase SixA 

sixA Escherichia coli 

Q7YTB0 Q7YTB0_BOMMO Ecdysteroid-phosphate 

phosphatase 

N/A Bombyx mori 

Q96HS1 PGAM5_HUMAN Serine/threonine-

protein phosphatase 

PGAM5, 

mitochondrial 

PGAM5 Homo sapiens 

O43980 M1PAS_EIMTE Mannitol-1-

phosphatase 

N/A Eimeria tenella 

Q9NQ88 TIGAR_HUMAN Fructose-2,6-

bisphosphatase TIGAR 

TIGAR Homo sapiens 

 

 

 

 

 

 

 



Appendix 2  

 

Determining the optimum number of templates to use for homology modelling using Rosetta REscore 

 

 

 

 

The above graph shows the number of templates (3, 5, 10, 15, 20, 30 and 50) used to create the preliminary 

homology models of a representative member of cluster 6541 (Accession Number G3AXW8), against Rosetta’s 

REscore for each model produced. 

 

Higher quality models have lower Rosetta REscores (Combs et al., 2013). As the number of templates used for 

modelling increases the quality of the models produced decreases. 
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Appendix 3 

 

Determine the optimum number of templates to use for homology modelling using Qmean scores 

 

 

 

 

The above graph shows the number of templates (3, 5, 10, 15, 20, 30 and 50) used to create the preliminary 

homology models of a representative member of cluster 6541 (Accession Number G3AXW8), against Qmean 

scores for each model produced. 

 

Higher quality models have higher Qmean scores (Benkert et al., 2008). An increase from 3 to 5 templates 

improves the models scores, however further increases in the number of templates has a negative effect on the 

quality of the models produced. 
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Appendix 4 

 

Number of iterations performed by Jackhmmer against the number of sequences collected from the UniRef90 

database, using Homo sapiens PGAM5 (Accession number Q96HS1) as the query. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of Iterations 

N
u

m
b

er
 o

f 
S

eq
u

en
ce

s 
C

o
ll

ec
te

d
 



Number of iterations performed by Jackhmmer against the number of sequences collected from the UniRef90 

database, using Escherichia coli SixA (Accession number P76502) as the query.  
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